Factors That Influence Gaps Between Teeth

Factors That Influence Gaps Between Teeth

Importance of Early Orthodontic Evaluation

Gaps between teeth, often referred to as diastemas, can be a distinctive feature of an individual's smile. While cultural perceptions around dental gaps vary widely-with some seeing them as charming and others considering them undesirable-understanding the reasons behind these spaces is important from both a dental health and aesthetic perspective. Among the myriad factors that contribute to this dental phenomenon, genetic factors play a significant role.


Genetics undeniably lays the groundwork for various physical attributes, including the arrangement of our teeth. Regular brushing and flossing are essential with braces Kids' dental alignment services permanent teeth. The size of the jaw relative to the size of the teeth is one such genetically influenced trait that can lead to gaps. If an individual has inherited larger jaws but smaller teeth, there's more room within the mouth than needed for the size of their teeth, leading to spaces between them. Conversely, having large teeth in a smaller jaw can cause crowding rather than spacing; thus, it becomes evident how crucial genetic inheritance is in determining whether or not someone might have diastemas.


Another genetic factor contributing to gaps is related to tooth development itself. Sometimes, certain genes may influence anomalies in tooth formation such as missing teeth (a condition known as hypodontia) or extra teeth (supernumerary teeth), both of which can affect neighboring tooth positioning and lead to gaps. For instance, if a lateral incisor fails to develop due to genetic predisposition, it could create space that results in a noticeable gap between remaining front teeth.


The frenum-a small fold of tissue inside the mouth-also has its role dictated by genetics. The labial frenum connects the upper lip to the gum just above your front two upper teeth. In some cases, individuals inherit a thicker or longer labial frenum that extends lower than usual between their front teeth, preventing those two central incisors from coming together fully and causing a gap.


Orthodontic issues passed down through generations further highlight genetics' stake in dental spacing. Conditions like misaligned bites or irregular tooth eruptions are often familial traits that increase susceptibility to developing gaps without intervention.


While environmental factors such as thumb sucking during childhood or improper swallowing reflexes also contribute significantly to diastemas over time by exerting pressure on developing dentition structures-genetic predispositions create an underlying blueprint from which these behaviors exacerbate existing tendencies toward gaps.


In conclusion, genetics plays a multifaceted and foundational role in determining whether someone might have spaces between their teeth. This does not mean that all hope is lost for those who wish otherwise; modern orthodontics offers numerous corrective options regardless of one's genetic legacy-from braces and aligners designed specifically for closing gaps-to frenectomy procedures reducing exaggerated frenal attachments influence on tooth positionings-all illustrating how understanding our genetic makeup informs proactive approaches towards achieving desired dental aesthetics while maintaining oral health integrity across lifetimes enriched by diverse smiles worldwide!

The early loss of primary teeth is a common occurrence in pediatric dentistry, often arising due to decay, trauma, or genetic predispositions. While it may appear initially inconsequential given the eventual eruption of permanent teeth, this premature loss can have significant implications for dental development, particularly influencing tooth alignment and the emergence of gaps.


Primary teeth, often referred to as "baby teeth," serve more than just a temporary role in a child's oral health. They are essential placeholders for permanent teeth, ensuring proper spacing and alignment as the child grows. When primary teeth fall out prematurely, this natural spacing can be disrupted. The adjacent teeth tend to drift into the vacant space left by the lost tooth, primarily because there is no longer any physical barrier to keep them in their original positions. This drifting can lead to crowding or misalignment when permanent teeth begin to emerge.


One direct consequence of early primary tooth loss is the formation of gaps between remaining teeth. These spaces can become problematic if left unmanaged. For instance, gaps may allow food particles to lodge easily between teeth, leading to an increased risk of cavities and gum disease. Moreover, these gaps might not provide sufficient space for incoming permanent teeth, potentially resulting in overlapping or crooked adult dentition.


Another factor influencing tooth alignment following early tooth loss is the timing and sequence of eruption of both primary and permanent teeth. Ideally, there's a harmonious transition where each primary tooth falls out just before its corresponding permanent successor is ready to take its place. However, when this sequence is interrupted by premature loss, especially without intervention like space maintainers-a device used by dentists to hold open a space until the permanent tooth erupts-there's an increased likelihood that new gaps will form or existing ones will widen.


Furthermore, genetic factors also play a critical role in determining how much impact the early loss of primary teeth will have on future alignment issues. Children genetically predisposed to smaller jaw sizes or larger-than-average adult teeth may face more pronounced challenges with overcrowding after losing baby teeth too soon.


Parental awareness and proactive dental care are paramount in mitigating these potential problems associated with early tooth loss. Regular dental check-ups enable timely identification and management strategies such as orthodontic assessments or interventions that can guide proper alignment over time.


In conclusion, while early loss of primary teeth might seem like a minor issue at first glance-especially considering they're meant to be temporary-their premature absence poses risks for developing malocclusions and undesired spaces between future adult dentition. Understanding these factors underscores the importance of diligent oral hygiene practices from an early age alongside professional dental guidance aimed at preserving healthy smiles into adulthood.

More about us:

Social Media:

Facebook About Us:


Benefits of Early Intervention in Orthodontics

Thumb sucking and other oral habits are intriguing topics when considering their impact on dental health, particularly in the formation of gaps between teeth. These habits, often developed during early childhood, can significantly influence dental alignment and spacing as a child grows.


Thumb sucking is a natural reflex for infants and young children, providing comfort and security. However, when this habit persists beyond the age of four or five, it may start to affect the child's dental structure. Prolonged thumb sucking can exert pressure on the upper front teeth, causing them to protrude or become misaligned. This forward movement of the teeth might lead to gaps in both primary (baby) teeth and eventually in permanent teeth if the habit continues unchecked.


Similarly, other oral habits such as tongue thrusting-where the tongue pushes against the front teeth while swallowing-can also contribute to spacing issues. The repeated pressure from the tongue can cause the front teeth to move forward, creating gaps over time. This habit often goes unnoticed because it occurs subconsciously during swallowing or speaking.


Pacifier use mirrors some effects of thumb sucking but is generally easier to control since parents can limit access to pacifiers more easily than thumbs. Nonetheless, prolonged use of a pacifier beyond toddlerhood can result in similar dental concerns, including open bites or spaces between teeth.


It's crucial for parents and caregivers to monitor these oral habits closely as children grow. Encouraging cessation at an appropriate age can help mitigate long-term dental effects. Pediatric dentists often suggest positive reinforcement techniques rather than criticism or punishment for breaking these habits.


In conclusion, while thumb sucking and other oral habits are common among young children and typically harmless during early development stages, their persistence can lead to significant changes in dental alignment that result in gaps between teeth. Addressing these habits early with professional guidance ensures healthier dental outcomes as children transition from their primary set of teeth to permanent ones.

Benefits of Early Intervention in Orthodontics

Overview of Comprehensive Orthodontic Strategies

The gap between teeth, technically known as diastema, is a dental condition that has intrigued both professionals and laypeople alike. While some individuals embrace their tooth gaps as a unique aspect of their smile, others seek orthodontic solutions to close them. One of the primary factors influencing these gaps is jaw size and its developmental aspects during childhood and adolescence.


The human jaw plays a critical role in determining the alignment and spacing of teeth. From birth through early childhood, the jaw undergoes significant changes that set the stage for how teeth will eventually be arranged. The size of the jaw is particularly influential; if a child's jaws are proportionately larger than their incoming teeth, this can lead to spaces or gaps. Conversely, if the jaw is too small relative to the size and number of teeth, crowding may occur.


Developmental issues often intertwine with genetic factors, impacting how jaws grow and develop over time. For instance, hereditary traits can dictate whether an individual will have a smaller or larger jaw structure compared to average standards. Additionally, certain congenital conditions or syndromes can also contribute to atypical jaw development.


Environmental factors play a significant role as well. Habits such as thumb sucking or prolonged use of pacifiers during formative years can exert pressure on developing jaws and alter their growth trajectory. These habits might cause forward movement of front teeth or affect how upper and lower jaws relate to each other, potentially leading to gaps.


Moreover, the timing of tooth eruption is another critical factor intertwined with developmental issues. If permanent teeth take longer than usual to erupt after losing baby teeth, temporary gaps may form which could either persist or close naturally over time depending on subsequent dental developments.


Orthodontists often consider these various elements when devising treatment plans for closing gaps in teeth. Understanding that diastema might not just be about missing tissue but rather rooted in more complex anatomical development allows for more tailored approaches to treatment-be it braces, aligners, or other corrective procedures.


In conclusion, while aesthetic preferences drive many individuals' decisions regarding tooth gaps, it's important to recognize that underlying biological processes heavily influence these spaces between our smiles. Jaw size and developmental issues are crucial players in this intricate dance between nature's design and nurture's influence; acknowledging them provides us with deeper insights into dental health management throughout life stages.

Role of Technology in Modern Pediatric Orthodontics

The importance of timely orthodontic assessment cannot be overstated, particularly when it comes to addressing factors that influence gaps between teeth. Often referred to as diastema, these gaps can arise due to a myriad of reasons ranging from genetic predispositions to lifestyle habits and underlying health conditions. Understanding the root causes and implementing early interventions can significantly impact dental health outcomes and overall well-being.


One of the primary factors leading to gaps between teeth is genetics. Just as some individuals are predisposed to certain physical traits, others may naturally develop wider spaces between their teeth. While this might not pose immediate health risks, it is essential for orthodontists to assess whether these gaps could lead to future complications such as misaligned bites or improper jaw development. Early assessment allows for preventive measures that can guide tooth growth more effectively.


Another significant factor is childhood habits such as thumb sucking or prolonged use of pacifiers, which can push teeth outwards, creating spaces over time. These habits, if identified early through regular dental visits, can be addressed with behavioral interventions or orthodontic appliances designed to counteract the adverse effects on dental alignment.


Moreover, oral hygiene plays a crucial role in maintaining healthy tooth spacing. Poor dental care can lead to gum diseases like periodontitis which cause loss of bone and tissue around the teeth, subsequently resulting in increased gaps. Timely orthodontic assessments help in identifying early signs of gum disease, allowing for treatments that preserve both gum health and tooth alignment.


In some cases, missing teeth caused by trauma or extraction without proper orthodontic planning contribute significantly to gap formation. Here again, timely assessments provide an opportunity for orthodontists to plan replacements or adjustments that prevent further misalignment and aesthetic concerns.


Lastly, systemic conditions such as certain syndromes or hormonal imbalances may also manifest through changes in oral structure, including diastema formation. Regular orthodontic check-ups play a pivotal role in detecting these anomalies early on and coordinating with medical professionals for comprehensive care strategies.


In conclusion, timely orthodontic assessments serve as a critical tool in diagnosing and managing factors influencing gaps between teeth. By ensuring that individuals receive appropriate evaluation at key developmental stages, we not only enhance oral health but also improve confidence and quality of life through better-functioning smiles. Investing time in these evaluations ultimately aids in crafting tailored treatment plans that address both immediate concerns and long-term dental harmony.

Tips for Parents: Ensuring Successful Orthodontic Outcomes for Children

Gaps between teeth in children, often referred to as diastemas, are a common dental concern that can influence not only the aesthetics of a child's smile but also their oral health. Understanding the factors that contribute to these gaps and the treatments available is essential for parents and guardians who wish to ensure optimal dental development for their children.


There are several factors that can lead to the development of gaps between teeth in kids. One primary factor is the natural growth pattern of a child's mouth. As children grow, their jaws may develop at a different pace compared to their teeth, leading to temporary spacing issues. This phenomenon is quite normal during certain stages of development as baby teeth fall out and permanent teeth emerge.


Another influential factor is genetics. Just like other physical traits, dental characteristics such as tooth size, jaw size, and overall arch form are inherited from parents. If there is a family history of diastemas or larger jaw-to-tooth size ratios, it's more likely for a child to develop similar spacing issues.


Thumb sucking and prolonged use of pacifiers beyond toddler years can also contribute to gaps between teeth. These habits exert pressure on the developing front teeth and can push them forward or apart over time. Additionally, issues such as tongue thrusting-a condition where the tongue presses against the front teeth during swallowing-can similarly cause misalignment and spacing.


Moreover, missing teeth due to congenital absence (a condition known as hypodontia) naturally results in gaps within the dental arch. When one or more permanent teeth fail to develop properly, space maintenance becomes crucial until orthodontic intervention can be applied.


Fortunately, there are several common orthodontic treatments available for closing these gaps in children's teeth effectively. Traditional braces remain one of the most popular options; they apply continuous pressure over time to move teeth into desired positions gradually closing any unwanted spaces.


For younger children with significant gaps due primarily to thumb-sucking or similar habits rather than structural anomalies, interceptive orthodontics might be recommended by dentists early on before all permanent teeth have erupted completely. This early intervention can include devices designed specifically for habit correction alongside partial braces if necessary.


In some cases where minimal movement is needed simply involving slight realignment without extensive repositioning across multiple areas within an arch-aligners could serve as an effective alternative treatment method especially appealing due its aesthetic advantage being nearly invisible when worn correctly throughout day-to-day activities including school settings among peers who may not even notice them present!


Retainers too play pivotal roles post-treatment ensuring newly aligned dentition stays stable long-term preventing recurrence those earlier encountered gap-related challenges once deemed concerning initially prior receiving appropriate care required achieving best possible outcomes seen today thanks modern advancements made field dentistry allied health professions working together collaboratively benefit patients worldwide alike regardless age demographics served equally well given right circumstances presented individually each unique case warranted attention approached accordingly therein lies importance seeking professional advice expertise whenever doubts arise moving forwards confidently knowing support available always just around corner ready assist guide journey healthier happier smiles future awaits!

Preventive Measures and Parental Guidance for Healthy Dental Development: Factors That Influence Gaps Between Teeth


Dental health is a crucial aspect of overall well-being, especially in children whose teeth are still developing. One common concern among parents is the presence of gaps between their children's teeth. These gaps, known as diastemas, can be influenced by various factors, and understanding these can help in taking preventive measures to ensure healthy dental development.


Firstly, genetic factors play a significant role in determining whether a child will have gaps between their teeth. Parents with diastemas are more likely to pass this trait onto their children due to inherited oral structures such as jaw size and tooth size. While we cannot alter genetics, being aware of this possibility allows parents and dental professionals to monitor dental development closely from an early age.


Another factor influencing tooth gaps is oral habits during childhood. Thumb sucking and prolonged use of pacifiers or bottles can exert pressure on the front teeth, causing them to shift and create spaces over time. Parents should encourage cessation of these habits by the age of three to minimize their impact on dental alignment. Positive reinforcement techniques or using orthodontic advice can aid in breaking these habits gently.


The natural growth process also contributes to spacing issues as baby teeth fall out and permanent teeth begin to emerge. It's essential for parents to understand that some gaps are temporary during this transitional phase. However, regular check-ups with a pediatric dentist can help ensure that there aren't underlying issues affecting the permanent dentition's proper eruption.


Diet plays an unexpected but important role as well. A balanced diet rich in vitamins and minerals supports healthy bone growth and tooth development. Ensuring children get adequate calcium helps strengthen their developing jaws and teeth while reducing the likelihood of malocclusions that cause spacing issues.


Furthermore, maintaining good oral hygiene practices from an early age sets the foundation for healthy teeth alignment. Parents should teach children how to brush and floss properly, focusing on removing plaque that could otherwise lead to gum disease-a condition which might exacerbate or create new gaps between teeth due to gum recession.


In instances where spacing persists despite preventive efforts, consulting with an orthodontist might be necessary. Orthodontic treatments like braces or aligners can effectively address persistent diastemas by gradually moving the teeth into desired positions.


In conclusion, while several factors influence gaps between children's teeth-from genetics and habits to diet-parents have a pivotal role in guiding their children's dental health journey through informed preventative measures. By fostering good oral hygiene practices early on, monitoring developmental changes closely, addressing harmful habits promptly, ensuring proper nutrition, and seeking professional guidance when needed, parents can significantly contribute to achieving optimal dental outcomes for their children's future smiles.

Orthodontics
Connecting the arch-wire on brackets with wire
Occupation
Names Orthodontist
Occupation type
Specialty
Activity sectors
Dentistry
Description
Education required
Dental degree, specialty training
Fields of
employment
Private practices, hospitals

Orthodontics[a][b] is a dentistry specialty that addresses the diagnosis, prevention, management, and correction of mal-positioned teeth and jaws, as well as misaligned bite patterns.[2] It may also address the modification of facial growth, known as dentofacial orthopedics.

Abnormal alignment of the teeth and jaws is very common. The approximate worldwide prevalence of malocclusion was as high as 56%.[3] However, conclusive scientific evidence for the health benefits of orthodontic treatment is lacking, although patients with completed treatment have reported a higher quality of life than that of untreated patients undergoing orthodontic treatment.[4][5] The main reason for the prevalence of these malocclusions is diets with less fresh fruit and vegetables and overall softer foods in childhood, causing smaller jaws with less room for the teeth to erupt.[6] Treatment may require several months to a few years and entails using dental braces and other appliances to gradually adjust tooth position and jaw alignment. In cases where the malocclusion is severe, jaw surgery may be incorporated into the treatment plan. Treatment usually begins before a person reaches adulthood, insofar as pre-adult bones may be adjusted more easily before adulthood.

History

[edit]

Though it was rare until the Industrial Revolution,[7] there is evidence of the issue of overcrowded, irregular, and protruding teeth afflicting individuals. Evidence from Greek and Etruscan materials suggests that attempts to treat this disorder date back to 1000 BC, showcasing primitive yet impressively well-crafted orthodontic appliances. In the 18th and 19th centuries, a range of devices for the "regulation" of teeth were described by various dentistry authors who occasionally put them into practice.[8] As a modern science, orthodontics dates back to the mid-1800s.[9] The field's influential contributors include Norman William Kingsley[9] (1829–1913) and Edward Angle[10] (1855–1930). Angle created the first basic system for classifying malocclusions, a system that remains in use today.[9]

Beginning in the mid-1800s, Norman Kingsley published Oral Deformities, which is now credited as one of the first works to begin systematically documenting orthodontics. Being a major presence in American dentistry during the latter half of the 19th century, not only was Kingsley one of the early users of extraoral force to correct protruding teeth, but he was also one of the pioneers for treating cleft palates and associated issues. During the era of orthodontics under Kingsley and his colleagues, the treatment was focused on straightening teeth and creating facial harmony. Ignoring occlusal relationships, it was typical to remove teeth for a variety of dental issues, such as malalignment or overcrowding. The concept of an intact dentition was not widely appreciated in those days, making bite correlations seem irrelevant.[8]

In the late 1800s, the concept of occlusion was essential for creating reliable prosthetic replacement teeth. This idea was further refined and ultimately applied in various ways when dealing with healthy dental structures as well. As these concepts of prosthetic occlusion progressed, it became an invaluable tool for dentistry.[8]

It was in 1890 that the work and impact of Dr. Edwards H. Angle began to be felt, with his contribution to modern orthodontics particularly noteworthy. Initially focused on prosthodontics, he taught in Pennsylvania and Minnesota before directing his attention towards dental occlusion and the treatments needed to maintain it as a normal condition, thus becoming known as the "father of modern orthodontics".[8]

By the beginning of the 20th century, orthodontics had become more than just the straightening of crooked teeth. The concept of ideal occlusion, as postulated by Angle and incorporated into a classification system, enabled a shift towards treating malocclusion, which is any deviation from normal occlusion.[8] Having a full set of teeth on both arches was highly sought after in orthodontic treatment due to the need for exact relationships between them. Extraction as an orthodontic procedure was heavily opposed by Angle and those who followed him. As occlusion became the key priority, facial proportions and aesthetics were neglected. To achieve ideal occlusals without using external forces, Angle postulated that having perfect occlusion was the best way to gain optimum facial aesthetics.[8]

With the passing of time, it became quite evident that even an exceptional occlusion was not suitable when considered from an aesthetic point of view. Not only were there issues related to aesthetics, but it usually proved impossible to keep a precise occlusal relationship achieved by forcing teeth together over extended durations with the use of robust elastics, something Angle and his students had previously suggested. Charles Tweed[11] in America and Raymond Begg[12] in Australia (who both studied under Angle) re-introduced dentistry extraction into orthodontics during the 1940s and 1950s so they could improve facial esthetics while also ensuring better stability concerning occlusal relationships.[13]

In the postwar period, cephalometric radiography[14] started to be used by orthodontists for measuring changes in tooth and jaw position caused by growth and treatment.[15] The x-rays showed that many Class II and III malocclusions were due to improper jaw relations as opposed to misaligned teeth. It became evident that orthodontic therapy could adjust mandibular development, leading to the formation of functional jaw orthopedics in Europe and extraoral force measures in the US. These days, both functional appliances and extraoral devices are applied around the globe with the aim of amending growth patterns and forms. Consequently, pursuing true, or at least improved, jaw relationships had become the main objective of treatment by the mid-20th century.[8]

At the beginning of the twentieth century, orthodontics was in need of an upgrade. The American Journal of Orthodontics was created for this purpose in 1915; before it, there were no scientific objectives to follow, nor any precise classification system and brackets that lacked features.[16]

Until the mid-1970s, braces were made by wrapping metal around each tooth.[9] With advancements in adhesives, it became possible to instead bond metal brackets to the teeth.[9]

In 1972, Lawrence F. Andrews gave an insightful definition of the ideal occlusion in permanent teeth. This has had meaningful effects on orthodontic treatments that are administered regularly,[16] and these are: 1. Correct interarchal relationships 2. Correct crown angulation (tip) 3. Correct crown inclination (torque) 4. No rotations 5. Tight contact points 6. Flat Curve of Spee (0.0–2.5 mm),[17] and based on these principles, he discovered a treatment system called the straight-wire appliance system, or the pre-adjusted edgewise system. Introduced in 1976, Larry Andrews' pre-adjusted edgewise appliance, more commonly known as the straight wire appliance, has since revolutionized fixed orthodontic treatment. The advantage of the design lies in its bracket and archwire combination, which requires only minimal wire bending from the orthodontist or clinician. It's aptly named after this feature: the angle of the slot and thickness of the bracket base ultimately determine where each tooth is situated with little need for extra manipulation.[18][19][20]

Prior to the invention of a straight wire appliance, orthodontists were utilizing a non-programmed standard edgewise fixed appliance system, or Begg's pin and tube system. Both of these systems employed identical brackets for each tooth and necessitated the bending of an archwire in three planes for locating teeth in their desired positions, with these bends dictating ultimate placements.[18]

Evolution of the current orthodontic appliances

[edit]

When it comes to orthodontic appliances, they are divided into two types: removable and fixed. Removable appliances can be taken on and off by the patient as required. On the other hand, fixed appliances cannot be taken off as they remain bonded to the teeth during treatment.

Fixed appliances

[edit]

Fixed orthodontic appliances are predominantly derived from the edgewise appliance approach, which typically begins with round wires before transitioning to rectangular archwires for improving tooth alignment. These rectangluar wires promote precision in the positioning of teeth following initial treatment. In contrast to the Begg appliance, which was based solely on round wires and auxiliary springs, the Tip-Edge system emerged in the early 21st century. This innovative technology allowed for the utilization of rectangular archwires to precisely control tooth movement during the finishing stages after initial treatment with round wires. Thus, almost all modern fixed appliances can be considered variations on this edgewise appliance system.

Early 20th-century orthodontist Edward Angle made a major contribution to the world of dentistry. He created four distinct appliance systems that have been used as the basis for many orthodontic treatments today, barring a few exceptions. They are E-arch, pin and tube, ribbon arch, and edgewise systems.

E-arch

[edit]

Edward H. Angle made a significant contribution to the dental field when he released the 7th edition of his book in 1907, which outlined his theories and detailed his technique. This approach was founded upon the iconic "E-Arch" or 'the-arch' shape as well as inter-maxillary elastics.[21] This device was different from any other appliance of its period as it featured a rigid framework to which teeth could be tied effectively in order to recreate an arch form that followed pre-defined dimensions.[22] Molars were fitted with braces, and a powerful labial archwire was positioned around the arch. The wire ended in a thread, and to move it forward, an adjustable nut was used, which allowed for an increase in circumference. By ligation, each individual tooth was attached to this expansive archwire.[8]

Pin and tube appliance

[edit]

Due to its limited range of motion, Angle was unable to achieve precise tooth positioning with an E-arch. In order to bypass this issue, he started using bands on other teeth combined with a vertical tube for each individual tooth. These tubes held a soldered pin, which could be repositioned at each appointment in order to move them in place.[8] Dubbed the "bone-growing appliance", this contraption was theorized to encourage healthier bone growth due to its potential for transferring force directly to the roots.[23] However, implementing it proved troublesome in reality.

Ribbon arch

[edit]

Realizing that the pin and tube appliance was not easy to control, Angle developed a better option, the ribbon arch, which was much simpler to use. Most of its components were already prepared by the manufacturer, so it was significantly easier to manage than before. In order to attach the ribbon arch, the occlusal area of the bracket was opened. Brackets were only added to eight incisors and mandibular canines, as it would be impossible to insert the arch into both horizontal molar tubes and the vertical brackets of adjacent premolars. This lack of understanding posed a considerable challenge to dental professionals; they were unable to make corrections to an excessive Spee curve in bicuspid teeth.[24] Despite the complexity of the situation, it was necessary for practitioners to find a resolution. Unparalleled to its counterparts, what made the ribbon arch instantly popular was that its archwire had remarkable spring qualities and could be utilized to accurately align teeth that were misaligned. However, a major drawback of this device was its inability to effectively control root position since it did not have enough resilience to generate the torque movements required for setting roots in their new place.[8]

Edgewise appliance

[edit]

In an effort to rectify the issues with the ribbon arch, Angle shifted the orientation of its slot from vertical, instead making it horizontal. In addition, he swapped out the wire and replaced it with a precious metal wire that was rotated by 90 degrees in relation—henceforth known as Edgewise.[25] Following extensive trials, it was concluded that dimensions of 22 × 28 mils were optimal for obtaining excellent control over crown and root positioning across all three planes of space.[26] After debuting in 1928, this appliance quickly became one of the mainstays for multibanded fixed therapy, although ribbon arches continued to be utilized for another decade or so beyond this point too.[8]

Labiolingual

[edit]

Prior to Angle, the idea of fitting attachments on individual teeth had not been thought of, and in his lifetime, his concern for precisely positioning each tooth was not highly appraised. In addition to using fingersprings for repositioning teeth with a range of removable devices, two main appliance systems were very popular in the early part of the 20th century. Labiolingual appliances use bands on the first molars joined with heavy lingual and labial archwires affixed with soldered fingersprings to shift single teeth.

Twin wire

[edit]

Utilizing bands around both incisors and molars, a twin-wire appliance was designed to provide alignment between these teeth. Constructed with two 10-mil steel archwires, its delicate features were safeguarded by lengthy tubes stretching from molars towards canines. Despite its efforts, it had limited capacity for movement without further modifications, rendering it obsolete in modern orthodontic practice.

Begg's Appliance

[edit]

Returning to Australia in the 1920s, the renowned orthodontist, Raymond Begg, applied his knowledge of ribbon arch appliances, which he had learned from the Angle School. On top of this, Begg recognized that extracting teeth was sometimes vital for successful outcomes and sought to modify the ribbon arch appliance to provide more control when dealing with root positioning. In the late 1930s, Begg developed his adaptation of the appliance, which took three forms. Firstly, a high-strength 16-mil round stainless steel wire replaced the original precious metal ribbon arch. Secondly, he kept the same ribbon arch bracket but inverted it so that it pointed toward the gums instead of away from them. Lastly, auxiliary springs were added to control root movement. This resulted in what would come to be known as the Begg Appliance. With this design, friction was decreased since contact between wire and bracket was minimal, and binding was minimized due to tipping and uprighting being used for anchorage control, which lessened contact angles between wires and corners of the bracket.

Tip-Edge System

[edit]

Begg's influence is still seen in modern appliances, such as Tip-Edge brackets. This type of bracket incorporates a rectangular slot cutaway on one side to allow for crown tipping with no incisal deflection of an archwire, allowing teeth to be tipped during space closure and then uprighted through auxiliary springs or even a rectangular wire for torque purposes in finishing. At the initial stages of treatment, small-diameter steel archwires should be used when working with Tip-Edge brackets.

Contemporary edgewise systems

[edit]

Throughout time, there has been a shift in which appliances are favored by dentists. In particular, during the 1960s, when it was introduced, the Begg appliance gained wide popularity due to its efficiency compared to edgewise appliances of that era; it could produce the same results with less investment on the dentist's part. Nevertheless, since then, there have been advances in technology and sophistication in edgewise appliances, which led to the opposite conclusion: nowadays, edgewise appliances are more efficient than the Begg appliance, thus explaining why it is commonly used.

Automatic rotational control

[edit]

At the beginning, Angle attached eyelets to the edges of archwires so that they could be held with ligatures and help manage rotations. Now, however, no extra ligature is needed due to either twin brackets or single brackets that have added wings touching underneath the wire (Lewis or Lang brackets). Both types of brackets simplify the process of obtaining moments that control movements along a particular plane of space.

Alteration in bracket slot dimensions

[edit]

In modern dentistry, two types of edgewise appliances exist: the 18- and 22-slot varieties. While these appliances are used differently, the introduction of a 20-slot device with more precise features has been considered but not pursued yet.[27]

Straight-wire bracket prescriptions

[edit]

Rather than rely on the same bracket for all teeth, L.F. Andrews found a way to make different brackets for each tooth in the 1980s, thanks to the increased convenience of bonding.[28] This adjustment enabled him to avoid having multiple bends in archwires that would have been needed to make up for variations in tooth anatomy. Ultimately, this led to what was termed a "straight-wire appliance" system – an edgewise appliance that greatly enhanced its efficiency.[29] The modern edgewise appliance has slightly different construction than the original one. Instead of relying on faciolingual bends to accommodate variations among teeth, each bracket has a correspondingly varying base thickness depending on the tooth it is intended for. However, due to individual differences between teeth, this does not completely eliminate the need for compensating bends.[30] Accurately placing the roots of many teeth requires angling brackets in relation to the long axis of the tooth. Traditionally, this mesiodistal root positioning necessitated using second-order, or tip, bends along the archwire. However, angling the bracket or bracket slot eliminates this need for bends.

Given the discrepancies in inclination of facial surfaces across individual teeth, placing a twist, otherwise known as third-order or torque bends, into segments of each rectangular archwire was initially required with the edgewise appliance. These bends were necessary for all patients and wires, not just to avoid any unintentional movement of suitably placed teeth or when moving roots facially or lingually. Angulation of either brackets or slots can minimize the need for second-order or tip bends on archwires. Contemporary edgewise appliances come with brackets designed to adjust for any facial inclinations, thereby eliminating or reducing any third-order bends. These brackets already have angulation and torque values built in so that each rectangluar archwire can be contorted to form a custom fit without inadvertently shifting any correctly positioned teeth. Without bracket angulation and torque, second-order or tip bends would still be required on each patient's archwire.

Methods

[edit]
Upper and lower jaw functional expanders

A typical treatment for incorrectly positioned teeth (malocclusion) takes from one to two years, with braces being adjusted every four to 10 weeks by orthodontists,[31] while university-trained dental specialists are versed in the prevention, diagnosis, and treatment of dental and facial irregularities. Orthodontists offer a wide range of treatment options to straighten crooked teeth, fix irregular bites, and align the jaws correctly.[32] There are many ways to adjust malocclusion. In growing patients, there are more options to treat skeletal discrepancies, either by promoting or restricting growth using functional appliances, orthodontic headgear, or a reverse pull facemask. Most orthodontic work begins in the early permanent dentition stage before skeletal growth is completed. If skeletal growth has completed, jaw surgery is an option. Sometimes teeth are extracted to aid the orthodontic treatment (teeth are extracted in about half of all the cases, most commonly the premolars).[33]

Orthodontic therapy may include the use of fixed or removable appliances. Most orthodontic therapy is delivered using appliances that are fixed in place,[34] for example, braces that are adhesively bonded to the teeth. Fixed appliances may provide greater mechanical control of the teeth; optimal treatment outcomes are improved by using fixed appliances.

Fixed appliances may be used, for example, to rotate teeth if they do not fit the arch shape of the other teeth in the mouth, to adjust multiple teeth to different places, to change the tooth angle of teeth, or to change the position of a tooth's root. This treatment course is not preferred where a patient has poor oral hygiene, as decalcification, tooth decay, or other complications may result. If a patient is unmotivated (insofar as treatment takes several months and requires commitment to oral hygiene), or if malocclusions are mild.

The biology of tooth movement and how advances in gene therapy and molecular biology technology may shape the future of orthodontic treatment.[35]

Braces

[edit]
Dental braces

Braces are usually placed on the front side of the teeth, but they may also be placed on the side facing the tongue (called lingual braces). Brackets made out of stainless steel or porcelain are bonded to the center of the teeth using an adhesive. Wires are placed in a slot in the brackets, which allows for controlled movement in all three dimensions.

Apart from wires, forces can be applied using elastic bands,[36] and springs may be used to push teeth apart or to close a gap. Several teeth may be tied together with ligatures, and different kinds of hooks can be placed to allow for connecting an elastic band.[37][36]

Clear aligners are an alternative to braces, but insufficient evidence exists to determine their effectiveness.[38]

Treatment duration

[edit]

The time required for braces varies from person to person as it depends on the severity of the problem, the amount of room available, the distance the teeth must travel, the health of the teeth, gums, and supporting bone, and how closely the patient follows instructions. On average, however, once the braces are put on, they usually remain in place for one to three years. After braces are removed, most patients will need to wear a retainer all the time for the first six months, then only during sleep for many years.[39]

Headgear

[edit]

Orthodontic headgear, sometimes referred to as an "extra-oral appliance", is a treatment approach that requires the patient to have a device strapped onto their head to help correct malocclusion—typically used when the teeth do not align properly. Headgear is most often used along with braces or other orthodontic appliances. While braces correct the position of teeth, orthodontic headgear—which, as the name suggests, is worn on or strapped onto the patient's head—is most often added to orthodontic treatment to help alter the alignment of the jaw, although there are some situations in which such an appliance can help move teeth, particularly molars.

Full orthodontic headgear with headcap, fitting straps, facebow, and elastics

Whatever the purpose, orthodontic headgear works by exerting tension on the braces via hooks, a facebow, coils, elastic bands, metal orthodontic bands, and other attachable appliances directly into the patient's mouth. It is most effective for children and teenagers because their jaws are still developing and can be easily manipulated. (If an adult is fitted with headgear, it is usually to help correct the position of teeth that have shifted after other teeth have been extracted.) Thus, headgear is typically used to treat a number of jaw alignment or bite problems, such as overbite and underbite.[40]

Palatal expansion

[edit]

Palatal expansion can be best achieved using a fixed tissue-borne appliance. Removable appliances can push teeth outward but are less effective at maxillary sutural expansion. The effects of a removable expander may look the same as they push teeth outward, but they should not be confused with actually expanding the palate. Proper palate expansion can create more space for teeth as well as improve both oral and nasal airflow.[41]

Jaw surgery

[edit]

Jaw surgery may be required to fix severe malocclusions.[42] The bone is broken during surgery and stabilized with titanium (or bioresorbable) plates and screws to allow for healing to take place.[43] After surgery, regular orthodontic treatment is used to move the teeth into their final position.[44]

During treatment

[edit]

To reduce pain during the orthodontic treatment, low-level laser therapy (LLLT), vibratory devices, chewing adjuncts, brainwave music, or cognitive behavioral therapy can be used. However, the supporting evidence is of low quality, and the results are inconclusive.[45]

Post treatment

[edit]

After orthodontic treatment has been completed, there is a tendency for teeth to return, or relapse, back to their pre-treatment positions. Over 50% of patients have some reversion to pre-treatment positions within 10 years following treatment.[46] To prevent relapse, the majority of patients will be offered a retainer once treatment has been completed and will benefit from wearing their retainers. Retainers can be either fixed or removable.

Removable retainers

[edit]

Removable retainers are made from clear plastic, and they are custom-fitted for the patient's mouth. It has a tight fit and holds all of the teeth in position. There are many types of brands for clear retainers, including Zendura Retainer, Essix Retainer, and Vivera Retainer.[47] A Hawley retainer is also a removable orthodontic appliance made from a combination of plastic and metal that is custom-molded to fit the patient's mouth. Removable retainers will be worn for different periods of time, depending on the patient's need to stabilize the dentition.[48]

Fixed retainers

[edit]

Fixed retainers are a simple wire fixed to the tongue-facing part of the incisors using dental adhesive and can be specifically useful to prevent rotation in incisors. Other types of fixed retainers can include labial or lingual braces, with brackets fixed to the teeth.[48]

Clear aligners

[edit]

Clear aligners are another form of orthodontics commonly used today, involving removable plastic trays. There has been controversy about the effectiveness of aligners such as Invisalign or Byte; some consider them to be faster and more freeing than the alternatives.[49]

Training

[edit]

There are several specialty areas in dentistry, but the specialty of orthodontics was the first to be recognized within dentistry.[50] Specifically, the American Dental Association recognized orthodontics as a specialty in the 1950s.[50] Each country has its own system for training and registering orthodontic specialists.

Australia

[edit]

In Australia, to obtain an accredited three-year full-time university degree in orthodontics, one will need to be a qualified dentist (complete an AHPRA-registered general dental degree) with a minimum of two years of clinical experience. There are several universities in Australia that offer orthodontic programs: the University of Adelaide, the University of Melbourne, the University of Sydney, the University of Queensland, the University of Western Australia, and the University of Otago.[51] Orthodontic courses are accredited by the Australian Dental Council and reviewed by the Australian Society of Orthodontists (ASO). Prospective applicants should obtain information from the relevant institution before applying for admission.[52] After completing a degree in orthodontics, specialists are required to be registered with the Australian Health Practitioner Regulation Agency (AHPRA) in order to practice.[53][54]

Bangladesh

[edit]

Dhaka Dental College in Bangladesh is one of the many schools recognized by the Bangladesh Medical and Dental Council (BM&DC) that offer post-graduation orthodontic courses.[55][56] Before applying to any post-graduation training courses, an applicant must have completed the Bachelor of Dental Surgery (BDS) examination from any dental college.[55] After application, the applicant must take an admissions test held by the specific college.[55] If successful, selected candidates undergo training for six months.[57]

Canada

[edit]

In Canada, obtaining a dental degree, such as a Doctor of Dental Surgery (DDS) or Doctor of Medical Dentistry (DMD), would be required before being accepted by a school for orthodontic training.[58] Currently, there are 10 schools in the country offering the orthodontic specialty.[58] Candidates should contact the individual school directly to obtain the most recent pre-requisites before entry.[58] The Canadian Dental Association expects orthodontists to complete at least two years of post-doctoral, specialty training in orthodontics in an accredited program after graduating from their dental degree.

United States

[edit]

Similar to Canada, there are several colleges and universities in the United States that offer orthodontic programs. Every school has a different enrollment process, but every applicant is required to have graduated with a DDS or DMD from an accredited dental school.[59][60] Entrance into an accredited orthodontics program is extremely competitive and begins by passing a national or state licensing exam.[61]

The program generally lasts for two to three years, and by the final year, graduates are required to complete the written American Board of Orthodontics (ABO) exam.[61] This exam is also broken down into two components: a written exam and a clinical exam.[61] The written exam is a comprehensive exam that tests for the applicant's knowledge of basic sciences and clinical concepts.[61] The clinical exam, however, consists of a Board Case Oral Examination (BCOE), a Case Report Examination (CRE), and a Case Report Oral Examination (CROE).[61] Once certified, certification must then be renewed every ten years.[61] Orthodontic programs can award a Master of Science degree, a Doctor of Science degree, or a Doctor of Philosophy degree, depending on the school and individual research requirements.[62]

United Kingdom

[edit]

Throughout the United Kingdom, there are several Orthodontic Specialty Training Registrar posts available.[63] The program is full-time for three years, and upon completion, trainees graduate with a degree at the Masters or Doctorate level.[63] Training may take place within hospital departments that are linked to recognized dental schools.[63] Obtaining a Certificate of Completion of Specialty Training (CCST) allows an orthodontic specialist to be registered under the General Dental Council (GDC).[63] An orthodontic specialist can provide care within a primary care setting, but to work at a hospital as an orthodontic consultant, higher-level training is further required as a post-CCST trainee.[63] To work within a university setting as an academic consultant, completing research toward obtaining a Ph.D. is also required.[63]

See also

[edit]
  • Orthodontic technology
  • Orthodontic indices
  • List of orthodontic functional appliances
  • Molar distalization
  • Mouth breathing
  • Obligate nasal breathing

Notes

[edit]
  1. ^ Also referred to as orthodontia
  2. ^ "Orthodontics" comes from the Greek orthos ('correct, straight') and -odont- ('tooth').[1]

References

[edit]
  1. ^ "Definition of orthodontics | Dictionary.com". www.dictionary.com. Retrieved 2019-08-28.
  2. ^ "What is orthodontics?// Useful Resources: FAQ and Downloadable eBooks". Orthodontics Australia. Retrieved 2020-08-13.
  3. ^ Lombardo G, Vena F, Negri P, Pagano S, Barilotti C, Paglia L, Colombo S, Orso M, Cianetti S (June 2020). "Worldwide prevalence of malocclusion in the different stages of dentition: A systematic review and meta-analysis". Eur J Paediatr Dent. 21 (2): 115–22. doi:10.23804/ejpd.2020.21.02.05. PMID 32567942.
  4. ^ Whitcomb I (2020-07-20). "Evidence and Orthodontics: Does Your Child Really Need Braces?". Undark Magazine. Retrieved 2020-07-27.
  5. ^ "Controversial report finds no proof that dental braces work". British Dental Journal. 226 (2): 91. 2019-01-01. doi:10.1038/sj.bdj.2019.65. ISSN 1476-5373. S2CID 59222957.
  6. ^ von Cramon-Taubadel N (December 2011). "Global human mandibular variation reflects differences in agricultural and hunter-gatherer subsistence strategies". Proceedings of the National Academy of Sciences of the United States of America. 108 (49): 19546–19551. Bibcode:2011PNAS..10819546V. doi:10.1073/pnas.1113050108. PMC 3241821. PMID 22106280.
  7. ^ Rose, Jerome C.; Roblee, Richard D. (June 2009). "Origins of dental crowding and malocclusions: an anthropological perspective". Compendium of Continuing Education in Dentistry (Jamesburg, N.J.: 1995). 30 (5): 292–300. ISSN 1548-8578. PMID 19514263.
  8. ^ a b c d e f g h i j k Proffit WR, Fields Jr HW, Larson BE, Sarver DM (2019). Contemporary orthodontics (Sixth ed.). Philadelphia, PA. ISBN 978-0-323-54387-3. OCLC 1089435881.cite book: CS1 maint: location missing publisher (link)
  9. ^ a b c d e "A Brief History of Orthodontic Braces – ArchWired". www.archwired.com. 17 July 2019.[self-published source]
  10. ^ Peck S (November 2009). "A biographical portrait of Edward Hartley Angle, the first specialist in orthodontics, part 1". The Angle Orthodontist. 79 (6): 1021–1027. doi:10.2319/021009-93.1. PMID 19852589.
  11. ^ "The Application of the Principles of the Edge- wise Arch in the Treatment of Malocclusions: II.*". meridian.allenpress.com. Retrieved 2023-02-07.
  12. ^ "British Orthodontic Society > Museum and Archive > Collection > Fixed Appliances > Begg". www.bos.org.uk. Retrieved 2023-02-07.
  13. ^ Safirstein D (August 2015). "P. Raymond Begg". American Journal of Orthodontics and Dentofacial Orthopedics. 148 (2): 206. doi:10.1016/j.ajodo.2015.06.005. PMID 26232825.
  14. ^ Higley LB (August 1940). "Lateral head roentgenograms and their relation to the orthodontic problem". American Journal of Orthodontics and Oral Surgery. 26 (8): 768–778. doi:10.1016/S0096-6347(40)90331-3. ISSN 0096-6347.
  15. ^ Themes UF (2015-01-12). "14: Cephalometric radiography". Pocket Dentistry. Retrieved 2023-02-07.
  16. ^ a b Andrews LF (December 2015). "The 6-elements orthodontic philosophy: Treatment goals, classification, and rules for treating". American Journal of Orthodontics and Dentofacial Orthopedics. 148 (6): 883–887. doi:10.1016/j.ajodo.2015.09.011. PMID 26672688.
  17. ^ Andrews LF (September 1972). "The six keys to normal occlusion". American Journal of Orthodontics. 62 (3): 296–309. doi:10.1016/s0002-9416(72)90268-0. PMID 4505873. S2CID 8039883.
  18. ^ a b Themes UF (2015-01-01). "31 The straight wire appliance". Pocket Dentistry. Retrieved 2023-02-07.
  19. ^ Andrews LF (July 1979). "The straight-wire appliance". British Journal of Orthodontics. 6 (3): 125–143. doi:10.1179/bjo.6.3.125. PMID 297458. S2CID 33259729.
  20. ^ Phulari B (2013), "Andrews' Straight Wire Appliance", History of Orthodontics, Jaypee Brothers Medical Publishers (P) Ltd., p. 98, doi:10.5005/jp/books/12065_11, ISBN 9789350904718, retrieved 2023-02-07
  21. ^ Angle EH. Treatment of malocclusion of the teeth. 7th éd. Philadelphia: S.S.White Dental Mfg Cy, 1907
  22. ^ Philippe J (March 2008). "How, why, and when was the edgewise appliance born?". Journal of Dentofacial Anomalies and Orthodontics. 11 (1): 68–74. doi:10.1051/odfen/20084210113. ISSN 2110-5715.
  23. ^ Angle EH (1912). "Evolution of orthodontia. Recent developments". Dental Cosmos. 54: 853–867.
  24. ^ Brodie AG (1931). "A discussion on the Newest Angle Mechanism". The Angle Orthodontist. 1: 32–38.
  25. ^ Angle EH (1928). "The latest and best in Orthodontic Mechanism". Dental Cosmos. 70: 1143–1156.
  26. ^ Brodie AG (1956). "Orthodontic Concepts Prior to the Death of Edward Angle". The Angle Orthodontist. 26: 144–155.
  27. ^ Matasa CG, Graber TM (April 2000). "Angle, the innovator, mechanical genius, and clinician". American Journal of Orthodontics and Dentofacial Orthopedics. 117 (4): 444–452. doi:10.1016/S0889-5406(00)70164-8. PMID 10756270.
  28. ^ Andrews LF. Straight Wire: The Concept and Appliance. San Diego: LA Wells; 1989.
  29. ^ Andrews LF (1989). Straight wire: the concept and appliance. Lisa Schirmer. San Diego, CA. ISBN 978-0-9616256-0-3. OCLC 22808470.cite book: CS1 maint: location missing publisher (link)
  30. ^ Roth RH (November 1976). "Five year clinical evaluation of the Andrews straight-wire appliance". Journal of Clinical Orthodontics. 10 (11): 836–50. PMID 1069735.
  31. ^ Fleming PS, Fedorowicz Z, Johal A, El-Angbawi A, Pandis N, et al. (The Cochrane Collaboration) (June 2015). "Surgical adjunctive procedures for accelerating orthodontic treatment". The Cochrane Database of Systematic Reviews. 2015 (6). John Wiley & Sons, Ltd.: CD010572. doi:10.1002/14651858.cd010572. PMC 6464946. PMID 26123284.
  32. ^ "What is an Orthodontist?". Orthodontics Australia. 5 December 2019.
  33. ^ Dardengo C, Fernandes LQ, Capelli Júnior J (February 2016). "Frequency of orthodontic extraction". Dental Press Journal of Orthodontics. 21 (1): 54–59. doi:10.1590/2177-6709.21.1.054-059.oar. PMC 4816586. PMID 27007762.
  34. ^ "Child Dental Health Survey 2013, England, Wales and Northern Ireland". digital.nhs.uk. Retrieved 2018-03-08.
  35. ^ Atsawasuwan P, Shirazi S (2019-04-10). "Advances in Orthodontic Tooth Movement: Gene Therapy and Molecular Biology Aspect". In Aslan BI, Uzuner FD (eds.). Current Approaches in Orthodontics. IntechOpen. doi:10.5772/intechopen.80287. ISBN 978-1-78985-181-6. Retrieved 2021-05-16.
  36. ^ a b "Elastics For Braces: Rubber Bands in Orthodontics". Orthodontics Australia. 2019-12-15. Retrieved 2020-12-13.
  37. ^ Mitchell L (2013). An Introduction to Orthodontics. Oxford Medical Publications. pp. 220–233.
  38. ^ Rossini G, Parrini S, Castroflorio T, Deregibus A, Debernardi CL (September 2015). "Efficacy of clear aligners in controlling orthodontic tooth movement: a systematic review". The Angle Orthodontist. 85 (5): 881–889. doi:10.2319/061614-436.1. PMC 8610387. PMID 25412265. S2CID 10787375. The quality level of the studies was not sufficient to draw any evidence-based conclusions.
  39. ^ "Dental Braces and Retainers".
  40. ^ Millett DT, Cunningham SJ, O'Brien KD, Benson PE, de Oliveira CM (February 2018). "Orthodontic treatment for deep bite and retroclined upper front teeth in children". The Cochrane Database of Systematic Reviews. 2 (2): CD005972. doi:10.1002/14651858.CD005972.pub4. PMC 6491166. PMID 29390172.
  41. ^ "Palate Expander". Cleveland Clinic. Retrieved October 29, 2024.
  42. ^ "Jaw Surgery". Modern Orthodontic Clinic in Sammamish & Bellevue. Retrieved 2024-10-03.
  43. ^ Agnihotry A, Fedorowicz Z, Nasser M, Gill KS, et al. (The Cochrane Collaboration) (October 2017). Zbigniew F (ed.). "Resorbable versus titanium plates for orthognathic surgery". The Cochrane Database of Systematic Reviews. 10 (10). John Wiley & Sons, Ltd: CD006204. doi:10.1002/14651858.cd006204. PMC 6485457. PMID 28977689.
  44. ^ "British Orthodontic Society > Public & Patients > Your Jaw Surgery". www.bos.org.uk. Retrieved 2019-08-28.
  45. ^ Fleming PS, Strydom H, Katsaros C, MacDonald L, Curatolo M, Fudalej P, Pandis N, et al. (Cochrane Oral Health Group) (December 2016). "Non-pharmacological interventions for alleviating pain during orthodontic treatment". The Cochrane Database of Systematic Reviews. 2016 (12): CD010263. doi:10.1002/14651858.CD010263.pub2. PMC 6463902. PMID 28009052.
  46. ^ Yu Y, Sun J, Lai W, Wu T, Koshy S, Shi Z (September 2013). "Interventions for managing relapse of the lower front teeth after orthodontic treatment". The Cochrane Database of Systematic Reviews. 2014 (9): CD008734. doi:10.1002/14651858.CD008734.pub2. PMC 10793711. PMID 24014170.
  47. ^ "Clear Retainers | Maintain Your Hard to Get Smile with Clear Retainers". Retrieved 2020-01-13.
  48. ^ a b Martin C, Littlewood SJ, Millett DT, Doubleday B, Bearn D, Worthington HV, Limones A (May 2023). "Retention procedures for stabilising tooth position after treatment with orthodontic braces". The Cochrane Database of Systematic Reviews. 2023 (5): CD002283. doi:10.1002/14651858.CD002283.pub5. PMC 10202160. PMID 37219527.
  49. ^ Putrino A, Barbato E, Galluccio G (March 2021). "Clear Aligners: Between Evolution and Efficiency-A Scoping Review". International Journal of Environmental Research and Public Health. 18 (6): 2870. doi:10.3390/ijerph18062870. PMC 7998651. PMID 33799682.
  50. ^ a b Christensen GJ (March 2002). "Orthodontics and the general practitioner". Journal of the American Dental Association. 133 (3): 369–371. doi:10.14219/jada.archive.2002.0178. PMID 11934193.
  51. ^ "How to become an orthodontist". Orthodontics Australia. 26 September 2017.
  52. ^ "Studying orthodontics". Australian Society of Orthodontists. 26 September 2017.
  53. ^ "Specialties and Specialty Fields". Australian Health Practitioners Regulation Agency.
  54. ^ "Medical Specialties and Specialty Fields". Medical Board of Australia.
  55. ^ a b c "Dhaka Dental College". Dhaka Dental College. Archived from the original on October 28, 2017. Retrieved October 28, 2017.
  56. ^ "List of recognized medical and dental colleges". Bangladesh Medical & Dental Council (BM&DC). Retrieved October 28, 2017.
  57. ^ "Orthodontic Facts - Canadian Association of Orthodontists". Canadian Association of Orthodontists. Retrieved 26 October 2017.
  58. ^ a b c "FAQ: I Want To Be An Orthodontist - Canadian Association of Orthodontists". Canadian Association of Orthodontists. Retrieved 26 October 2017.
  59. ^ "RCDC - Eligibility". The Royal College of Dentists of Canada. Archived from the original on 29 October 2019. Retrieved 26 October 2017.
  60. ^ "Accredited Orthodontic Programs - AAO Members". www.aaoinfo.org.
  61. ^ a b c d e f "About Board Certification". American Board of Orthodontists. Archived from the original on 16 February 2019. Retrieved 26 October 2017.
  62. ^ "Accredited Orthodontic Programs | AAO Members". American Association of Orthodontists. Retrieved 26 October 2017.
  63. ^ a b c d e f "Orthodontic Specialty Training in the UK" (PDF). British Orthodontic Society. Retrieved 28 October 2017.

 

Infants may use pacifiers or their thumb or fingers to soothe themselves
Newborn baby thumb sucking
A bonnet macaque thumb sucking

Thumb sucking is a behavior found in humans, chimpanzees, captive ring-tailed lemurs,[1] and other primates.[2] It usually involves placing the thumb into the mouth and rhythmically repeating sucking contact for a prolonged duration. It can also be accomplished with any organ within reach (such as other fingers and toes) and is considered to be soothing and therapeutic for the person. As a child develops the habit, it will usually develop a "favourite" finger to suck on.

At birth, a baby will reflexively suck any object placed in its mouth; this is the sucking reflex responsible for breastfeeding. From the first time they engage in nutritive feeding, infants learn that the habit can not only provide valuable nourishment, but also a great deal of pleasure, comfort, and warmth. Whether from a mother, bottle, or pacifier, this behavior, over time, begins to become associated with a very strong, self-soothing, and pleasurable oral sensation. As the child grows older, and is eventually weaned off the nutritional sucking, they can either develop alternative means for receiving those same feelings of physical and emotional fulfillment, or they can continue experiencing those pleasantly soothing experiences by beginning to suck their thumbs or fingers.[3] This reflex disappears at about 4 months of age; thumb sucking is not purely an instinctive behavior and therefore can last much longer.[4] Moreover, ultrasound scans have revealed that thumb sucking can start before birth, as early as 15 weeks from conception; whether this behavior is voluntary or due to random movements of the fetus in the womb is not conclusively known.

Thumb sucking generally stops by the age of 4 years. Some older children will retain the habit, which can cause severe dental problems.[5] While most dentists would recommend breaking the habit as early as possible, it has been shown that as long as the habit is broken before the onset of permanent teeth, at around 5 years old, the damage is reversible.[6] Thumb sucking is sometimes retained into adulthood and may be due to simply habit continuation. Using anatomical and neurophysiological data a study has found that sucking the thumb is said to stimulate receptors within the brain which cause the release of mental and physical tension.[7]

Dental problems and prevention

[edit]
Alveolar prognathism, caused by thumb sucking and tongue thrusting in a 7-year-old girl.

Percentage of children who suck their thumbs (data from two researchers)

Age Kantorowicz[4] Brückl[8]
0–1 92% 66%
1–2 93%
2–3 87%
3–4 86% 25%
4–5 85%
5–6 76%
Over 6 9%

Most children stop sucking on thumbs, pacifiers or other objects on their own between 2 and 4 years of age. No harm is done to their teeth or jaws until permanent teeth start to erupt. The only time it might cause concern is if it goes on beyond 6 to 8 years of age. At this time, it may affect the shape of the oral cavity or dentition.[9] During thumbsucking the tongue sits in a lowered position and so no longer balances the forces from the buccal group of musculature. This results in narrowing of the upper arch and a posterior crossbite. Thumbsucking can also cause the maxillary central incisors to tip labially and the mandibular incisors to tip lingually, resulting in an increased overjet and anterior open bite malocclusion, as the thumb rests on them during the course of sucking. In addition to proclination of the maxillary incisors, mandibular incisors retrusion will also happen. Transverse maxillary deficiency gives rise to posterior crossbite, ultimately leading to a Class II malocclusion.[10]

Children may experience difficulty in swallowing and speech patterns due to the adverse changes. Aside from the damaging physical aspects of thumb sucking, there are also additional risks, which unfortunately, are present at all ages. These include increased risk of infection from communicable diseases, due to the simple fact that non-sterile thumbs are covered with infectious agents, as well as many social implications. Some children experience social difficulties, as often children are taunted by their peers for engaging in what they can consider to be an “immature” habit. This taunting often results the child being rejected by the group or being subjected to ridicule by their peers, which can cause understandable psychological stress.[11]

Methods to stop sucking habits are divided into 2 categories: Preventive Therapy and Appliance Therapy.[10]

Examples to prevent their children from sucking their thumbs include the use of bitterants or piquant substances on their child's hands—although this is not a procedure encouraged by the American Dental Association[9] or the Association of Pediatric Dentists. Some suggest that positive reinforcements or calendar rewards be given to encourage the child to stop sucking their thumb.

The American Dental Association recommends:

  • Praise children for not sucking, instead of scolding them when they do.
  • If a child is sucking their thumb when feeling insecure or needing comfort, focus instead on correcting the cause of the anxiety and provide comfort to your child.
  • If a child is sucking on their thumb because of boredom, try getting the child's attention with a fun activity.
  • Involve older children in the selection of a means to cease thumb sucking.
  • The pediatric dentist can offer encouragement to the child and explain what could happen to the child's teeth if he/she does not stop sucking.
  • Only if these tips are ineffective, remind the child of the habit by bandaging the thumb or putting a sock/glove on the hand at night.
  • Other orthodontics[12] for appliances are available.

The British Orthodontic Society recommends the same advice as ADA.[13]

A Cochrane review was conducted to review the effectiveness of a variety of clinical interventions for stopping thumb-sucking. The study showed that orthodontic appliances and psychological interventions (positive and negative reinforcement) were successful at preventing thumb sucking in both the short and long term, compared to no treatment.[14] Psychological interventions such as habit reversal training and decoupling have also proven useful in body focused repetitive behaviors.[15]

Clinical studies have shown that appliances such as TGuards can be 90% effective in breaking the thumb or finger sucking habit. Rather than use bitterants or piquants, which are not endorsed by the ADA due to their causing of discomfort or pain, TGuards break the habit simply by removing the suction responsible for generating the feelings of comfort and nurture.[16] Other appliances are available, such as fabric thumb guards, each having their own benefits and features depending on the child's age, willpower and motivation. Fixed intraoral appliances have been known to create problems during eating as children when removing their appliances may have a risk of breaking them. Children with mental illness may have reduced compliance.[10]

Some studies mention the use of extra-oral habit reminder appliance to treat thumb sucking. An alarm is triggered when the child tries to suck the thumb to stop the child from this habit.[10][17] However, more studies are required to prove the effectiveness of external devices on thumb sucking.

Children's books

[edit]
  • In Heinrich Hoffmann’s Struwwelpeter, the "thumb-sucker" Konrad is punished by having both of his thumbs cut off.
  • There are several children's books on the market with the intention to help the child break the habit of thumb sucking. Most of them provide a story the child can relate to and some coping strategies.[18] Experts recommend to use only books in which the topic of thumb sucking is shown in a positive and respectful way.[19]

See also

[edit]
  • Stereotypic movement disorder
  • Prognathism

References

[edit]
  1. ^ Jolly A (1966). Lemur Behavior. Chicago: University of Chicago Press. p. 65. ISBN 978-0-226-40552-0.
  2. ^ Benjamin, Lorna S.: "The Beginning of Thumbsucking." Child Development, Vol. 38, No. 4 (Dec., 1967), pp. 1065–1078.
  3. ^ "About the Thumb Sucking Habit". Tguard.
  4. ^ a b Kantorowicz A (June 1955). "Die Bedeutung des Lutschens für die Entstehung erworbener Fehlbildungen". Fortschritte der Kieferorthopädie. 16 (2): 109–21. doi:10.1007/BF02165710. S2CID 28204791.
  5. ^ O'Connor A (27 September 2005). "The Claim: Thumb Sucking Can Lead to Buck Teeth". The New York Times. Retrieved 1 August 2012.
  6. ^ Friman PC, McPherson KM, Warzak WJ, Evans J (April 1993). "Influence of thumb sucking on peer social acceptance in first-grade children". Pediatrics. 91 (4): 784–6. doi:10.1542/peds.91.4.784. PMID 8464667.
  7. ^ Ferrante A, Ferrante A (August 2015). "[Finger or thumb sucking. New interpretations and therapeutic implications]". Minerva Pediatrica (in Italian). 67 (4): 285–97. PMID 26129804.
  8. ^ Reichenbach E, Brückl H (1982). "Lehrbuch der Kieferorthopädie Bd. 1962;3:315-26.". Kieferorthopädische Klinik und Therapie Zahnärzliche Fortbildung. 5. Auflage Verlag. JA Barth Leipzig" alıntı Schulze G.
  9. ^ a b "Thumbsucking - American Dental Association". Archived from the original on 2010-06-19. Retrieved 2010-05-19.
  10. ^ a b c d Shetty RM, Shetty M, Shetty NS, Deoghare A (2015). "Three-Alarm System: Revisited to treat Thumb-sucking Habit". International Journal of Clinical Pediatric Dentistry. 8 (1): 82–6. doi:10.5005/jp-journals-10005-1289. PMC 4472878. PMID 26124588.
  11. ^ Fukuta O, Braham RL, Yokoi K, Kurosu K (1996). "Damage to the primary dentition resulting from thumb and finger (digit) sucking". ASDC Journal of Dentistry for Children. 63 (6): 403–7. PMID 9017172.
  12. ^ "Stop Thumb Sucking". Stop Thumb Sucking.org.
  13. ^ "Dummy and thumb sucking habits" (PDF). Patient Information Leaflet. British Orthodontic Society.
  14. ^ Borrie FR, Bearn DR, Innes NP, Iheozor-Ejiofor Z (March 2015). "Interventions for the cessation of non-nutritive sucking habits in children". The Cochrane Database of Systematic Reviews. 2021 (3): CD008694. doi:10.1002/14651858.CD008694.pub2. PMC 8482062. PMID 25825863.
  15. ^ Lee MT, Mpavaenda DN, Fineberg NA (2019-04-24). "Habit Reversal Therapy in Obsessive Compulsive Related Disorders: A Systematic Review of the Evidence and CONSORT Evaluation of Randomized Controlled Trials". Frontiers in Behavioral Neuroscience. 13: 79. doi:10.3389/fnbeh.2019.00079. PMC 6491945. PMID 31105537.
  16. ^ "Unique Thumb with Lock Band to Deter Child from Thumb Sucking". Clinical Research Associates Newsletter. 19 (6). June 1995.
  17. ^ Krishnappa S, Rani MS, Aariz S (2016). "New electronic habit reminder for the management of thumb-sucking habit". Journal of Indian Society of Pedodontics and Preventive Dentistry. 34 (3): 294–7. doi:10.4103/0970-4388.186750. PMID 27461817. S2CID 22658574.
  18. ^ "Books on the Subject of Thumb-Sucking". Thumb-Heroes. 9 December 2020.
  19. ^ Stevens Mills, Christine (2018). Two Thumbs Up - Understanding and Treatment of Thumb Sucking. ISBN 978-1-5489-2425-6.

Further reading

[edit]
  • "Duration of pacifier use, thumb sucking may affect dental arches". The Journal of the American Dental Association. 133 (12): 1610–1612. December 2002. doi:10.14219/jada.archive.2002.0102.
  • Mobbs E, Crarf GT (2011). Latchment Before Attachment, The First Stage of Emotional Development, Oral Tactile Imprinting. Westmead.
[edit]
  • "Oral Health Topics: Thumbsucking". American Dental Association. Archived from the original on 2010-06-19.
  • "Pacifiers & Thumb Sucking". Canadian Dental Association.
Crossbite
Unilateral posterior crossbite
Specialty Orthodontics

In dentistry, crossbite is a form of malocclusion where a tooth (or teeth) has a more buccal or lingual position (that is, the tooth is either closer to the cheek or to the tongue) than its corresponding antagonist tooth in the upper or lower dental arch. In other words, crossbite is a lateral misalignment of the dental arches.[1][2]

Anterior crossbite

[edit]
Class 1 with anterior crossbite

An anterior crossbite can be referred as negative overjet, and is typical of class III skeletal relations (prognathism).

Primary/mixed dentitions

[edit]

An anterior crossbite in a child with baby teeth or mixed dentition may happen due to either dental misalignment or skeletal misalignment. Dental causes may be due to displacement of one or two teeth, where skeletal causes involve either mandibular hyperplasia, maxillary hypoplasia or combination of both.

Dental crossbite

[edit]

An anterior crossbite due to dental component involves displacement of either maxillary central or lateral incisors lingual to their original erupting positions. This may happen due to delayed eruption of the primary teeth leading to permanent teeth moving lingual to their primary predecessors. This will lead to anterior crossbite where upon biting, upper teeth are behind the lower front teeth and may involve few or all frontal incisors. In this type of crossbite, the maxillary and mandibular proportions are normal to each other and to the cranial base. Another reason that may lead to a dental crossbite is crowding in the maxillary arch. Permanent teeth will tend to erupt lingual to the primary teeth in presence of crowding. Side-effects caused by dental crossbite can be increased recession on the buccal of lower incisors and higher chance of inflammation in the same area. Another term for an anterior crossbite due to dental interferences is Pseudo Class III Crossbite or Malocclusion.

Single tooth crossbite

[edit]

Single tooth crossbites can occur due to uneruption of a primary teeth in a timely manner which causes permanent tooth to erupt in a different eruption pattern which is lingual to the primary tooth.[3] Single tooth crossbites are often fixed by using a finger-spring based appliances.[4][5] This type of spring can be attached to a removable appliance which is used by patient every day to correct the tooth position.

Skeletal crossbite

[edit]

An anterior crossbite due to skeletal reasons will involve a deficient maxilla and a more hyperplastic or overgrown mandible. People with this type of crossbite will have dental compensation which involves proclined maxillary incisors and retroclined mandibular incisors. A proper diagnosis can be made by having a person bite into their centric relation will show mandibular incisors ahead of the maxillary incisors, which will show the skeletal discrepancy between the two jaws.[6]

Posterior crossbite

[edit]

Bjork defined posterior crossbite as a malocclusion where the buccal cusps of canine, premolar and molar of upper teeth occlude lingually to the buccal cusps of canine, premolar and molar of lower teeth.[7] Posterior crossbite is often correlated to a narrow maxilla and upper dental arch. A posterior crossbite can be unilateral, bilateral, single-tooth or entire segment crossbite. Posterior crossbite has been reported to occur between 7–23% of the population.[8][9] The most common type of posterior crossbite to occur is the unilateral crossbite which occurs in 80% to 97% of the posterior crossbite cases.[10][3] Posterior crossbites also occur most commonly in primary and mixed dentition. This type of crossbite usually presents with a functional shift of the mandible towards the side of the crossbite. Posterior crossbite can occur due to either skeletal, dental or functional abnormalities. One of the common reasons for development of posterior crossbite is the size difference between maxilla and mandible, where maxilla is smaller than mandible.[11] Posterior crossbite can result due to

  • Upper Airway Obstruction where people with "adenoid faces" who have trouble breathing through their nose. They have an open bite malocclusion and present with development of posterior crossbite.[12]
  • Prolong digit or suckling habits which can lead to constriction of maxilla posteriorly[13]
  • Prolong pacifier use (beyond age 4)[13]

Connections with TMD

[edit]

Unilateral posterior crossbite

[edit]

Unilateral crossbite involves one side of the arch. The most common cause of unilateral crossbite is a narrow maxillary dental arch. This can happen due to habits such as digit sucking, prolonged use of pacifier or upper airway obstruction. Due to the discrepancy between the maxillary and mandibular arch, neuromuscular guidance of the mandible causes mandible to shift towards the side of the crossbite.[14] This is also known as Functional mandibular shift. This shift can become structural if left untreated for a long time during growth, leading to skeletal asymmetries. Unilateral crossbites can present with following features in a child

  • Lower midline deviation[15] to the crossbite side
  • Class 2 Subdivision relationships
  • Temporomandibular disorders [16]

Treatment

[edit]

A child with posterior crossbite should be treated immediately if the child shifts their mandible on closing, which is often seen in a unilateral crossbite as mentioned above. The best age to treat a child with crossbite is in their mixed dentition when their palatal sutures have not fused to each other. Palatal expansion allows more space in an arch to relieve crowding and correct posterior crossbite. The correction can include any type of palatal expanders that will expand the palate which resolves the narrow constriction of the maxilla.[9] There are several therapies that can be used to correct a posterior crossbite: braces, 'Z' spring or cantilever spring, quad helix, removable plates, clear aligner therapy, or a Delaire mask. The correct therapy should be decided by the orthodontist depending on the type and severity of the crossbite.

One of the keys in diagnosing the anterior crossbite due to skeletal vs dental causes is diagnosing a CR-CO shift in a patient. An adolescent presenting with anterior crossbite may be positioning their mandible forward into centric occlusion (CO) due to the dental interferences. Thus finding their occlusion in centric relation (CR) is key in diagnosis. For anterior crossbite, if their CO matches their CR then the patient truly has a skeletal component to their crossbite. If the CR shows a less severe class 3 malocclusion or teeth not in anterior crossbite, this may mean that their anterior crossbite results due to dental interferences.[17]

Goal to treat unilateral crossbites should definitely include removal of occlusal interferences and elimination of the functional shift. Treating posterior crossbites early may help prevent the occurrence of Temporomandibular joint pathology.[18]

Unilateral crossbites can also be diagnosed and treated properly by using a Deprogramming splint. This splint has flat occlusal surface which causes the muscles to deprogram themselves and establish new sensory engrams. When the splint is removed, a proper centric relation bite can be diagnosed from the bite.[19]

Self-correction

[edit]

Literature states that very few crossbites tend to self-correct which often justify the treatment approach of correcting these bites as early as possible.[9] Only 0–9% of crossbites self-correct. Lindner et al. reported that 50% of crossbites were corrected in 76 four-year-old children.[20]

See also

[edit]
  • List of palatal expanders
  • Palatal expansion
  • Malocclusion

References

[edit]
  1. ^ "Elsevier: Proffit: Contemporary Orthodontics · Welcome". www.contemporaryorthodontics.com. Retrieved 2016-12-11.
  2. ^ Borzabadi-Farahani A, Borzabadi-Farahani A, Eslamipour F (October 2009). "Malocclusion and occlusal traits in an urban Iranian population. An epidemiological study of 11- to 14-year-old children". European Journal of Orthodontics. 31 (5): 477–84. doi:10.1093/ejo/cjp031. PMID 19477970.
  3. ^ a b Kutin, George; Hawes, Roland R. (1969-11-01). "Posterior cross-bites in the deciduous and mixed dentitions". American Journal of Orthodontics. 56 (5): 491–504. doi:10.1016/0002-9416(69)90210-3. PMID 5261162.
  4. ^ Zietsman, S. T.; Visagé, W.; Coetzee, W. J. (2000-11-01). "Palatal finger springs in removable orthodontic appliances--an in vitro study". South African Dental Journal. 55 (11): 621–627. ISSN 1029-4864. PMID 12608226.
  5. ^ Ulusoy, Ayca Tuba; Bodrumlu, Ebru Hazar (2013-01-01). "Management of anterior dental crossbite with removable appliances". Contemporary Clinical Dentistry. 4 (2): 223–226. doi:10.4103/0976-237X.114855. ISSN 0976-237X. PMC 3757887. PMID 24015014.
  6. ^ Al-Hummayani, Fadia M. (2017-03-05). "Pseudo Class III malocclusion". Saudi Medical Journal. 37 (4): 450–456. doi:10.15537/smj.2016.4.13685. ISSN 0379-5284. PMC 4852025. PMID 27052290.
  7. ^ Bjoerk, A.; Krebs, A.; Solow, B. (1964-02-01). "A Method for Epidemiological Registration of Malocculusion". Acta Odontologica Scandinavica. 22: 27–41. doi:10.3109/00016356408993963. ISSN 0001-6357. PMID 14158468.
  8. ^ Moyers, Robert E. (1988-01-01). Handbook of orthodontics. Year Book Medical Publishers. ISBN 9780815160038.
  9. ^ a b c Thilander, Birgit; Lennartsson, Bertil (2002-09-01). "A study of children with unilateral posterior crossbite, treated and untreated, in the deciduous dentition--occlusal and skeletal characteristics of significance in predicting the long-term outcome". Journal of Orofacial Orthopedics. 63 (5): 371–383. doi:10.1007/s00056-002-0210-6. ISSN 1434-5293. PMID 12297966. S2CID 21857769.
  10. ^ Thilander, Birgit; Wahlund, Sonja; Lennartsson, Bertil (1984-01-01). "The effect of early interceptive treatment in children with posterior cross-bite". The European Journal of Orthodontics. 6 (1): 25–34. doi:10.1093/ejo/6.1.25. ISSN 0141-5387. PMID 6583062.
  11. ^ Allen, David; Rebellato, Joe; Sheats, Rose; Ceron, Ana M. (2003-10-01). "Skeletal and dental contributions to posterior crossbites". The Angle Orthodontist. 73 (5): 515–524. ISSN 0003-3219. PMID 14580018.
  12. ^ Bresolin, D.; Shapiro, P. A.; Shapiro, G. G.; Chapko, M. K.; Dassel, S. (1983-04-01). "Mouth breathing in allergic children: its relationship to dentofacial development". American Journal of Orthodontics. 83 (4): 334–340. doi:10.1016/0002-9416(83)90229-4. ISSN 0002-9416. PMID 6573147.
  13. ^ a b Ogaard, B.; Larsson, E.; Lindsten, R. (1994-08-01). "The effect of sucking habits, cohort, sex, intercanine arch widths, and breast or bottle feeding on posterior crossbite in Norwegian and Swedish 3-year-old children". American Journal of Orthodontics and Dentofacial Orthopedics. 106 (2): 161–166. doi:10.1016/S0889-5406(94)70034-6. ISSN 0889-5406. PMID 8059752.
  14. ^ Piancino, Maria Grazia; Kyrkanides, Stephanos (2016-04-18). Understanding Masticatory Function in Unilateral Crossbites. John Wiley & Sons. ISBN 9781118971871.
  15. ^ Brin, Ilana; Ben-Bassat, Yocheved; Blustein, Yoel; Ehrlich, Jacob; Hochman, Nira; Marmary, Yitzhak; Yaffe, Avinoam (1996-02-01). "Skeletal and functional effects of treatment for unilateral posterior crossbite". American Journal of Orthodontics and Dentofacial Orthopedics. 109 (2): 173–179. doi:10.1016/S0889-5406(96)70178-6. PMID 8638566.
  16. ^ Pullinger, A. G.; Seligman, D. A.; Gornbein, J. A. (1993-06-01). "A multiple logistic regression analysis of the risk and relative odds of temporomandibular disorders as a function of common occlusal features". Journal of Dental Research. 72 (6): 968–979. doi:10.1177/00220345930720061301. ISSN 0022-0345. PMID 8496480. S2CID 25351006.
  17. ^ COSTEA, CARMEN MARIA; BADEA, MÎNDRA EUGENIA; VASILACHE, SORIN; MESAROŞ, MICHAELA (2016-01-01). "Effects of CO-CR discrepancy in daily orthodontic treatment planning". Clujul Medical. 89 (2): 279–286. doi:10.15386/cjmed-538. ISSN 1222-2119. PMC 4849388. PMID 27152081.
  18. ^ Kennedy, David B.; Osepchook, Matthew (2005-09-01). "Unilateral posterior crossbite with mandibular shift: a review". Journal (Canadian Dental Association). 71 (8): 569–573. ISSN 1488-2159. PMID 16202196.
  19. ^ Nielsen, H. J.; Bakke, M.; Blixencrone-Møller, T. (1991-12-01). "[Functional and orthodontic treatment of a patient with an open bite craniomandibular disorder]". Tandlaegebladet. 95 (18): 877–881. ISSN 0039-9353. PMID 1817382.
  20. ^ Lindner, A. (1989-10-01). "Longitudinal study on the effect of early interceptive treatment in 4-year-old children with unilateral cross-bite". Scandinavian Journal of Dental Research. 97 (5): 432–438. doi:10.1111/j.1600-0722.1989.tb01457.x. ISSN 0029-845X. PMID 2617141.
[edit]

 

Frequently Asked Questions

Gaps between teeth, known as diastemas, can be caused by several factors including genetics, discrepancies between jaw and tooth size, habits like thumb sucking or tongue thrusting, missing teeth, or an oversized labial frenum (the tissue connecting the inside of the upper lip to the gums).
The American Association of Orthodontists recommends that children have their first orthodontic evaluation by age 7. This early assessment can help determine if there are any underlying issues causing gaps and whether your child might benefit from early intervention.
Yes, while some gaps may be purely cosmetic and cause no harm, others can impact oral health. Gaps can lead to improper alignment which may affect chewing efficiency and speech development. They may also increase the risk of gum disease due to food trapping. An orthodontist can assess whether treatment is necessary for functional reasons.